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Abstract The percolation model studied in  finite strips ( L <  M )  at criticality is character- 
ized by the preferential growth of percolating clusters in the L-direction. In this aork we 
present a Monte Carlo and finite-size scaling study ofthe density profiles ofthe percolating 
clusters. n e  behaviour of the pair-connectedness function is also analysed at criticality 
within both the algebraic and the exponential regimes. 

1. Introduction 

The study of percolation phenomena has attracted growing attention due to their 
relevance in many fields of physics and physical chemistry (for example, see the reviews 
[l-61 and references therein). It should be noted that most of the available work on 
percolation in two dimensions, performed using different techniques, has been done 
in a L x L geometry [I-61. However, various authors have also considered the effect 
of non-quadratic shapes in percolation. For example, L x M and strip geometries have 
been studied by means of transfer matrix and phenomenological renormalization 
methods (see [7-111 and references therein). Furthermore, studies of other models in 
rectangular or strip geometries, such as for example the Ising model (see [E-141 and 
references therein), have demonstrated that this is a useful approach which may 
contribute to the understanding of the whole problem. In recent works [15,161 we 
have analysed some aspects of the critical behaviour of the site percolation model on 
the square lattice in an L x M geometry. This geometry is particularly useful for the 
understanding of finite-size effects on the behaviour of adsorbed monolayers on stepped 
surfaces assuming random adsorption on terraces L-lattice spacing wide ( M  = step 
length) [12-17], as well as for diffusion and conduction processes in layered media [6]. 

At criticality and using free boundary conditions, due to the constrain L<c M one 
observes the growth of percolating clusters in the Ldirection only [15]. Also, for a 
relatively small site occupation probability ( p  =0.5), percolating clusters in the L- 
direction can be observed [U]. Therefore, in previous works we have analysed some 
relevant properties of the system such as the L- and M-dependence of both the critical 
probability and the percolation probability, the average number of percolating clusters 
(which is of the order of M I L ) ,  the cluster length distribution given by an exponential- 
exponential function, the average cluster length (1)-2L, etc [15,16]. 

Therefore, in this work we present a Monte Carlo and finite-size scaling study of 
the percolating clusters density profile and the pair-connectedness function in the 
M-direction. Density profiles are studied just at the critical point and also close to it. 
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The behaviour of the pair connectedness function is analysed at criticality within both 
the algebraic and the exponential regimes. 

R A Monetti and E V Albano 

2. Theoretical background 

Details on the site percolation model have already been published in various reviews 
[l-61, so they do  not need to be repeated here. In the present work, the Monte Carlo 
simulations are performed using free boundary conditions in both the L and M- 
directions; clusters are identified using standard algorithms and the results are typically 
averaged over 103-105 different configurations, depending on the lattice size, in order 
to achieve reasonable statistics [15,16]. Since the study has always been performed 
under the constraint L<c M, we refer to this geometry as ‘finite strips’. 

21. The densify profile 

One quantity of interest is the density profile of the percolating clusters in the L- 
direction defined as the probability P(i, 5, L, M )  of a site located in the ith row parallel 
to the M-direction belonging to a percolating cluster, i.e. 

P(i,c,L,M)=(pM)-’ c(i,j) i = l , L  (1) 
j = l  

where 5 is the correlation length, p is the occupation probability and c( i , j )= l  
(c( i, j )  = 0) if the site {i, j }  belongs to a percolating cluster (otherwise). It is commonly 
known that close to the percolation threshold (p . )  and in the infinite-size limit the 
correlation length behaves as [l-61 

where U is the correlation length exponent ( U = $  in two dimensions [1-6]). 

homogeneous function, that is, 

where the exponent x has to be determined and p(i/L, &‘L, L/M) is a suitable scaling 
function. 

For the used strip geometry the density profile becomes independent of M. So, 
using equation (2) one can rewrite equation (3) as 

where 

belonging to a percolating cluster, can be written in terms of the density profile as 

c 4 P  - P r  (2) 

Close to p c  and for large lattices one expects that the density profile should be a 

P(i,  5, L, M )  = Lxp(i/L, L, L/M) (3) 

~ ( i ,  5, L ) = L ~ F [ ~ / L ,  ( p - p c ) ~ ” u )  (4) 
is also a suitable scaling function. 

On the other hand, the percolation probability @(p), i.e. the probability of a site 

The second summation can be put into integral form, that is, 

and this integral can be expressed in t e rm of the variable U = i/L. Then 

@(p) a L x ]  I‘[~,(p-p,)L”’]du. (7) 
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From finite-size scaling arguments it is known that at p .  and for large lattices @ ( p )  
behaves as 

@( p )  a L+‘’ (8) 
where p =&in two dimensions [l-61. Now, comparing equations (7) and (8) it follows 
that x = -p/ v, and therefore equation (4) becomes 

P(i, 5, L ) = L + ” P [ ~ / L ,  ( p - p , ) L ” ” ] .  (9) 

2.2. The pair-connectedness~nction at pc 

The pair-connectedness function is the probability that two sites at a distance r belong 
to the same cluster. Due to the geometry used (L<< M )  it is only interesting to study 
the pair-connectedness function calculated parallel to the M-direction on percolating 
clusters at p.. According to finite-size scaling arguments, one has that close to pc the 
pair-connectedness function G(r ,  5, L, M) behaves as [1-6] 

where r is now the distance measured parallel to the M-direction and g is a suitable 
scaling function. In the limit L<< M the function g becomes independent of the aspect 
ratio L / M  and also just at pc  the second variable vanishes, so equation (10) becomes 

Note that in the thermodynamic limit one has g ( r / L )  ot (r /L)-@’”,  so G ( r )  a 
rO?’”. Then, for r<< L, G(r ,  L )  exhibits the so-called algebraic behaviour [IS], while 
for L < r < M there appears an exponential decay of G( r, L),  namely 

G(r ,  5, & M )  = L-P”g[r/L, ( P  -P&””, L/Ml  (10) 

G(r ,  L )  = L?”g(r/L).  ( 1 1 )  

G(r ,  L )  a L-B’” exp(-ar/L) (12) 
where a is a constant independent of L [18]. The physical interpretation of this 
crossover behaviour is the following [18]: what matters in the finite-size scaling of a 
system which is finite in all its dimensions is its smallest linear dimension (L) .  So, 
when criticality is approached, the correlation length grows uniformly until 5 = L, then 
the system feels its finite size already very strongly and therefore 5 stays of the order 
of L throughout the critical region. Thus, G(r ,  L )  must have an exponential decay in 
the M-direction, with a correlation length proportional to L 

3. Results and discussion 

3.1. The density profile 

Figure l ( a )  shows plots of density profiles versus ( i -  L / 2 )  obtained at p c  using lattices 
of different sues. Due to the missing neighbour effect at i = 1 and i = L (remember 
that free boundary conditions are assumed) the profiles are depleted close to those 
boundaries. This effect propagates into the bulk and the profiles are symmetric around 
i = L/2,  as shown in figure ] ( a ) .  This fact can be understood because the correlation 
length 5, which would become infinite in an infinite system at critically, stays of the 
order of c= L in the present case due to the geometric constrain. Density profiles 
obtained for p < p c  are also symmetric and peak at i = L/2 .  The occurrence of peaked 
rather than flattened profiles for the bulk of samples with L= 100 suggests that even 
far away from criticality (say p =0.50) the correlation length is rather large. Because 
of the symmetry, the data corresponding to rows equidistant from i = L / 2  are averaged 
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Figure 1. ( a )  Plots of the density profiles P(i,  L) versus ( i -  LIZ) for lattices of different 
sizes(LxM): V,9X420;V,12X440:0, 1 6 x 5 7 6 ; 0 , 2 5 ~ 1 5 0 .  Lineshavebeendrawnto 
guide the eye. ( b )  Plot of P(i, L)L5/” versus i lL  for lattices of different sizes ( L x  M): 0, 
16x576; e, 12x440; V, 9x420; V, 6x200: 0,24%600.  (e) Plot of P(i/L,ApL‘/”)L51y 
versus i f &  with ApL”’=(p-p.)L1/”=O.24, for lattices of different sizes (LxM): 0, 
15x120; V,ZOx160;0,30x240, V,25X200. 
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Figure 1. (continued) 

over in the following. It should be noted that the order parameter profiles of the 
ferromagnetic Ising model in the absence of a magnetic field [12] (or equivalently the 
coverage profiles of the lattice gas model [13]) also exhibit a similar symmetry, but in 
contrast to the density profiles shown in figure 1 ( a )  the former profiles smoothly flatten 
out close to the critical temperature. 

In order to test the scaling hypothesis of equation (9), we first investigated just at 
criticality. In fact, at p = p c  the second variable vanishes and therefore it is convenient 
to make plots of P( i ,  L)LB/’ versus i /L .  As shown in figure l (b) ,  the collapsing of the 
data for lattices of different sizes is quite reasonable, taking into account the errors 
associated with the Monte Carlo simulation, and suggests that equation (9) should 
hold. However, a careful inspection of figure l (b)  shows the existence of a systematic 
deviation: the smaller the lattice width L the larger the value of P ( i ,  L)Lp’”. This 
behaviour is not surprising since a similar deviation has been observed in a scaling 
study of the probability of a site belonging to a percolating cluster, which is related 
to  the density profiles according to equations (5)-(8), and is due to a correction of 
the order of L-’ to the leading term [15]. 

Another possibility for testing equation (9) is to analyse the density profiles away 
from criticality but keeping constant the second scaling variable. Figure l ( c )  shows 
plots of P(i /L)LB” versus i / L  for different lattice sizes with p f p ,  but obtained 
keeping ( p  -p.)L”‘=0.24 constant. Again, data collapsing on a single curve is obser- 
ved, although a similar systematic deviation from that already discussed for figure l ( b )  
is also present. 

Inspection of the collapsed density profiles shown in figures l (b)  and l(c) suggests 
a parabolic symmetry around the maximum. In fact, close to the peak the data can 
be fitted by a curve of the form (P,.,-P)Lp’”~[[(L/2)-iJ/Ll6, with 6=1.8. 
However, a better fit is obtained using a third-degree polynomial of the form 
P=0.33+ 1.09x2.1Xz+ 1.47X3, with X = i/L. 
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3.2. The pair-connectedness function at p. 

As it has already been pointed out in section 2 that two regimes are of particular 
interest in order to study the behaviour of the pair-connectedness function at p c ,  namely 
the algebraic and exponential regions. Note that G(r, L) is obtained by averaging over 
different i-values with 1 =z iG L. 

R A Monetti and E V .4lbano 
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FigoreZ. ( a )  Log-log platsof G(r, L) versus r, within the algebraic regime (r<< L),obtained 
for lattices of di5erent sizes (Lx  M): 0 ,70x280;  0, 100x300; V. 150x600. The straight 
line with slope p l v  = 5/48 has been drawn for comparison. (b) Semilogarithmic plots of 
C(r,  L)Le’” versus r / L ,  within the exponential regime (Lc r <  M), obtained with lattices 
afdi5eerentsires (LxM):  0, 16x384; V, 9x576; V, 12x384; 0 , 6 % 4 2 0 .  
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Figure 2(a) shows log-log plots of G(r, L )  versus r obtained for lattices of different 
sizes within the algebraic regime (r<< L). According to equation (1  1) one should expect 
linear behaviour with an asymptotic slope given by p /  U = & = 0.105; nevertheless, from 
the straight lines of figure 2 ( ~ )  we get p/v=0.128+0.003. A collapse of the data was 
attempted without success. 
On the other hand, figure 2(b)  shows semilogarithmic plots of C(r, L)LB” versus 

r/L (see equation (12)) obtained with lattices of different sizes within the exponential 
regime ( L  < r < M ) .  In spite o f  the fact that points corresponding to different lattices 
are on straight lines, the observed data collapsing is poor. Let us note that the value 
L/a which enters in the exponential part of equation (12) is the mean cluster length 
( ( I ) ) ,  measured parallel to the M-direction [18]. 

From direct measurements of the cluster length distribution we have obtained 
(l)=2L [16]. On the other hand, from the slopes of the straight lines of Bgure 2(b)  
one gets a-values ranging from a = 0.38 ( L  = 6, M = 420) to a = 0.46 ( L  = 24, M = 576). 
This result suggests that in the asymptotic regime the expected value R = O S  should 
be recovered. 

It is interesting to note that the growth of percolating clusters in the Ldirection, 
due to the constraint LCC M, can be qualitatively compared with the development of 
domains of spins-up and spins-down crossing through the sample (L-direction), obser- 
ved for the same geometry, working with the ferromagnetic king model in the absence 
of both bulk and surface Belds [12-141. From conformal invariance [I91 and a Monte 
Carlo study of the exponential behaviour of the correlation function at criticality 
[12,13], it follows that the average distance ( l , )  between the border of domains with 
different spins is given by (Id)= (n/2)-’L.  

In order to understand the difference between the exponents / 3 / u  evaluated using 
the data of figure 2(a) and the exact values, as well as the failure o f  the connectedness 
function data collapsing, it should be noted that some of the exponents which govern 
the hulk critical behaviour of certain properties may be different from those valid when 
approaching the surface of the cluster. For example, the intersection o f  a percolating 
cluster with a lattice surface strongly reduces the connectivity and causes the exponent 
p = & to change into p, = 0.398 i 0.005 [20]. However, U remains unchanged. In the 
present work the evaluation of the connectedness function in the M-direction involves 
averages over rows belonging not only to the hulk but also to the surfaces and close 
to them. Therefore, due to the contribution of the latter, the ratio p / u  which follows 
from figure Z(a) slightly overestimates the exact value. In view of this result, the 
dependence of p on the distance to the surface is being analysed. Preliminary results 
obtained evaluating the connectedness function for i = 1 give p. = 0.40, which is in 
agreement with [ZO]. 

On the other hand, the correction that one may introduce in the scaled form of the 
density profiles due to the change in p (equation (10)) appears to be irrelevant in view 
of the obtained data collapsing shown in Bgures I ( b )  and l(c). 

4. Conclusions 

The density profiles of percolating clusters in the L-direction and the pair-connected- 
ness function of that clusters in the M-direction have been studied by means of the 
Monte Carlo method and discussed on the basis of finite-size scaling arguments. The 
missing neighbours at the edges of the lattice causes the connectivity to be reduced 
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and consequently the profiles become depleted close to this region. Profiles exhibit 
symmetry around the centre of the sample. The pair-connectedness function is studied 
within both the algebraic and the exponential regimes. Deviation from data collapsing 
is due to edge effects. The average cluster length (M-direction) evaluated within the 
exponential regime agrees with direct measurements made previously. 

R A Monetti and E V Albano 
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